Similarity solutions for the heat equation

Harald Hanche-Olsen
hanche@math.ntnu.no

Consider the heat equation in one space dimension:

$$
\begin{equation*}
\partial_{t} u=\partial_{x}^{2} u \tag{1}
\end{equation*}
$$

Note that the function $(x, t) \mapsto B u\left(A x, A^{2} t\right)$ solves the equation if u does. If u is a non-zero solution satisfying

$$
u(x, t)=A^{-\mu} u\left(A x, A^{2} t\right) \quad \text { for all } A>0
$$

then u is called a similarity solution of the heat equation. ${ }^{1}$ By selecting $A=x^{-1}$ one arrives at a representation of a similarity solution in terms of a function of a single variable: ${ }^{2}$

$$
\begin{equation*}
u(x, t)=x^{\mu} v\left(\frac{x^{2}}{4 t}\right) . \tag{2}
\end{equation*}
$$

Now, it is a simple exercise to show that a function u defined in this way solves (1) if and only if $v=v(\xi)$ solves

$$
\xi^{2} v^{\prime \prime}+\left(\xi^{2}+\frac{2 \mu+1}{2} \xi\right) v^{\prime}+\frac{\mu(\mu-1)}{4} \nu=0 .
$$

Two interesting special cases occur for $\mu \in\{0,1\}$. In these cases, the final term in the above equation drops out, and we are left with a first order separable equation for $w=v^{\prime}$, with solution given by

$$
\int \frac{\mathrm{d} w}{w}=-\int \frac{\xi^{2}+\left(\mu+\frac{1}{2}\right) \xi}{\xi^{2}} \mathrm{~d} \xi=-\left(\mu+\frac{1}{2}\right) \ln \xi-\xi+\text { constant }
$$

so that

$$
v^{\prime}(\xi)=w(\xi)=\text { constant } \cdot \xi^{-\mu-1 / 2} e^{-\xi}
$$

This latter expression is easily integrated using the substitution $\xi=\eta^{2}$:

$$
\begin{equation*}
\int \xi^{-\mu-1 / 2} e^{-\xi} \mathrm{d} \xi=2 \int \eta^{-2 \mu} e^{-\eta^{2}} \mathrm{~d} \eta \tag{3}
\end{equation*}
$$

[^0]Heating by constant surface temperature: $\mu=0$. When $\mu=0$ the above integral is easily evaluated, leading to

$$
\nu(\xi)=C_{1} \operatorname{erf} \eta+C_{2}=C_{1} \operatorname{erf} \sqrt{\xi}+C_{2} .
$$

With $u(x, t)=v\left(x^{2} / 4 t\right)$ we can impose the boundary conditions $v(0)=1$, $\nu(\infty)=0$, which imply $C_{2}=1$ and $C_{1}+C_{2}=0$. Thus

$$
u(x, t)=\operatorname{erfc} \frac{x}{2 \sqrt{t}}
$$

solves (1) with the initial and boundary conditions

$$
u(x, 0)=0, \quad u(0, t)=1 .
$$

Heating by constant surface heat flow: $\mu=1$. With $\mu=1$ we can evaluate (3) using partial integration:

$$
\int \eta^{-2} e^{-\eta^{2}} \mathrm{~d} \eta=-\eta^{-1} e^{-\eta^{2}}-2 \int e^{-\eta^{2}} \mathrm{~d} \eta=-\eta^{-1} e^{-\eta^{2}}-2 \text { erf } \eta .
$$

Thus we get

$$
v(\xi)=C_{1}\left(\eta^{-1} e^{-\eta^{2}}+2 \operatorname{erf} \eta\right)+C_{2}=C_{1}\left(\xi^{-1 / 2} e^{-\xi}+2 \operatorname{erf} \sqrt{\xi}\right)+C_{2}
$$

leading to

$$
u(x, t)=x v\left(\frac{x^{2}}{4 t}\right)=2 C_{1}\left(\sqrt{t} e^{-x^{2} / 4 t}+x \operatorname{erf} \frac{x}{2 \sqrt{t}}\right)+C_{2} x
$$

If we put $-C_{2}=2 C_{1}=1$, we then have the solution

$$
u(x, t)=\sqrt{t} e^{-x^{2} / 4 t}-x \operatorname{erfc} \frac{x}{2 \sqrt{t}}
$$

which satisfies

$$
u(x, 0)=0, \quad \partial_{x} u(0, t)=-1
$$

Appendix: The error function. The error function erf and the complementary error function are defined by

$$
\operatorname{erf} \eta=\frac{2}{\sqrt{ } \pi} \int_{0}^{\eta} e^{-\zeta^{2}} \mathrm{~d} \zeta, \quad \operatorname{erfc} \eta=\frac{2}{\sqrt{\pi}} \int_{\eta}^{\infty} e^{-\zeta^{2}} \mathrm{~d} \zeta .
$$

Note that

$$
\operatorname{erf} \eta+\operatorname{erfc} \eta=1, \quad \operatorname{erf} 0=\operatorname{erfc} \infty=0, \quad \operatorname{erf} \infty=\operatorname{erfc} 0=1 .
$$

[^0]: ${ }^{1}$ You may verify that, if $u(x, t)=B(A) u\left(A x, A^{2} t\right)$ for all $x>0, t>0$, and $A>0$ with B a continuous function of A, we must have $B=A^{-\mu}$ for some μ : First show that $B\left(A_{1} A_{2}\right)=$ $B\left(A_{1}\right) B\left(A_{2}\right)$.
 ${ }^{2}$ I planted the extra factor 4 in the numerator because it does simplify things later. We might also select $A=t^{-1 / 2}$, leading to the representation $u(x, t)=t^{\mu / 2} w\left(x^{2} / 4 t\right)$, which is of course essentially equaivalent. But our current choice turns out to make the calculations a bit easier.

