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A simple example

θ

g

λ

The period t depends on
λ, g, θmax. But how?

Consider the units:
[t] = T; [λ] = L; [g] = LT

−2; [θmax] = 1.

The only dimensionally correct combination:

t = f(θmax)

√
λ

g

Buckingham’s pi theorem formalizes this
procedure.
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The pendulum equation

λθ̈ + g sin θ = 0

Motivated by earlier analysis, introduce dimensionless time t∗ by

t =

√
λ

g
t∗

and get the dimensionless form of the equation:

θ̈ + sin θ = 0
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Edgar Buckingham (1867–1940)

Educated at Harvard and Leipzig, worked at the (US) National Bureau
of Standards 1905–1937. (Soil physics, gas properties, acoustics, fluid
mechanics, blackbody radiation.)

On Physically Similar Systems: Illustrations of the Use of Dimensional
Equations. Physical Review 4, 345–376 (1914).
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The original paper
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The Framework

Physical quantities: W1,W2, . . . ,Wn

Expressed in fundamental units L1, L2, . . . , Lm

Wj = W#
j [Wj ]; W#

j ∈ R, [Wj ] =
m∏

i=1

L
aij
i

Combinations of physical quantities:

W
x =

n∏

j=1

W
xj
j , x ∈ R

n

What are the units of W
x?

Theoretical physics colloquium 2002–11–05 – p.6/31

How units combine

[Wx] =
n∏

j=1

m∏

i=1

L
aijxj
i =

m∏

i=1

n∏

j=1

L
aijxj
i =

m∏

i=1

L

Pn
j=1

aijxj
i

Introduce the dimension vectors: {Wj} = (a1j , . . . , amj)
T which form

the columns of the dimension matrix A. Formally:

[Wx] = L
Ax

i.e., by linear algebra!

The combination [Wx] is dimensionless iff Ax = 0.
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Dimensionless combinations

[Wx] = L
Ax

Combinations W
zν are called independent if the vectors zν are linearly

independent.

We can create a
maximal independent set of dimensionless combinations

Πν = W
zν , ν = 1, . . . , k

by letting z1, . . . , zk be a basis for kerA.
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New variables

By expanding to a basis for R
n, we get an independent set of

combinations:

Π1, . . . ,Πk, X1, . . . , Xn−k

Each of the original variables Wj is a combination of these!

Hence we may, and shall, rewrite any problem in terms of the new
variables.
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Some physics

A general physical law:

F (W1, . . . ,Wn) = 0

Which means:

F#(W#
1 , . . . ,W#

n ) = 0

But most importantly: The form of this equation is invariant with
respect to a change of units.

Since F is a result of computing with (W1, . . . ,Wn), the units of F must
be the units of a combination of (W1, . . . ,Wn). Thus we may assume
WOLOG that F is dimensionless.
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Independence of units

Introduce new units L̃i by Li = eci L̃i

Wj = W̃#
j

m∏

i=1

L̃
aij
i = W#

j

m∏

i=1

L
aij
i = W#

j exp
( m∑

i=1

ciaij

) m∏

i=1

L̃
aij
i

and so

W̃#
j = ec{Wj}W#

j

The invariance under change of units thus means

F (W1, . . . ,Wn) = F (ec{W1}W1, . . . , e
c{Wn}Wn) (c ∈ R

m)

i.e., the equation is invariant under the action of an m-parameter
group of symmetries.
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Buckingham’s theorem

Any dimensionally correct relationship involving physical quantities can
be expressed in terms of a maximal set of dimensionless combinations
of the given quantities:

Φ(Π1, . . . ,Πk) = 0.
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The proof

Rewrite the physical law in terms of these variables:

Φ(Π1, . . . ,Πk, X1, . . . , Xn−k) = 0

The invariance:

Φ(Π1, . . . ,Πk, X1, . . . , Xn−k) = Φ(Π1, . . . ,Πk, e
c{X1}X1, . . . , e

c{Xn−k}Xn−k)

Linear algebra tells us that the vectors

(c{X1}, . . . , c{Xn−k}), c ∈ R
m

fill all of R
n−k, and it follows that

Φ depends only on the dimensionless combinations (Π1, . . . ,Πk).
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Example: Water waves

The speed v of a (not too small) water wave in deep water depends on
the wave length λ, acceleration of gravity g, and (perhaps) the density
ρ of water.

[λ] = L, [v] = LT
−1, [g] = LT

−2, [ρ] = ML
−3.

Since only ρ contains M, no dimensionless combination can involve ρ.
We find one dimensionless combination:

Π = v2g−1λ−1.

Thus

v ∝
√
gλ.
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Example: Nuclear explosions

Sir Geoffrey Taylor: The formation of a blast wave by a very intense
explosion. I & II. Proc. Royal Soc. (London) 201A, 159–186 (1950).

Radius r of the fireball is a function of time t, initial energy E, and initial
densityρ0 of air.

[r] = L, [t] = T, [E] = ML
2
T
−2, [ρ0] = ML

−3

Just one dimensionless combination:

Π = r5t−2ρ0E
−1

leading to

r ∝
(E

ρ0

)1/5

t2/5.
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Nuclear explosion: First 2 ms
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Nuclear explosion at 15 ms

The bar is 100 m long
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Nuclear explosion at 127 ms
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Nuclear yield
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Example: Fluid flow in pipes

Pressure drop per unit length dP/dx as a function of density ρ,
viscosity µ, average flow velocity U , pipe diameter D:
Two dimensionless combinations:

Π =
dP/dx ·D

U2ρ
, Re =

ρUD

µ

So we expect the dimensionless pressure Π to be a universal function
of the Reynolds number Re:

Π = f(Re)

Experiments bear this out.
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The Moody diagram
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Symmetry and heat conduction

ρc
∂u

∂t
= k

∂2u

∂x2

[ρc] =
M

ΘLT2
, [k] =

ML

ΘT3
, [x] = L, [t] = T, [u] = Θ

Just one dimensionless combination:

x2

t
· ρc
k

By selecting the length scale L and time scale T so that X2/T = k/(ρc)

we get the dimensionless form of the heat equation:

∂u

∂t
=

∂2u

∂x2
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Symmetry and heat conduction

∂u

∂t
=

∂2u

∂x2

This leaves a degree of freedom still: Rescaling x = αx∗, t = α2t∗

yields the equation invariant.
In addition, we have the obvious scale invariance on u, since the
equation is linear.

We combine these to solve the initial value problem with

u(x, 0) = δ(x)

If u solves this problem, then so does αu(αx, α2t).
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Similarity solution

Similarity solution:

u(x, t) = αu(αx, α2t)

for all x, t, α. With α = 1/
√
t this leads to

u(x, t) =
1√
t
v
(x2

t

)

and a corresponding ODE for v. The final solution is

u(x, t) =
1

2
√
πt

exp
(
−x2

4t

)
.
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Sophus Lie (1842–1899)
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Lie Symmetries

The geometry of a differential equation for q = q(t):

F (t, q, q̇, q̈) = 0

Reduces to a first order system:

dq = q̇ dt, dq̇ = q̈ dt (∗)

A vector field in (t, q) space induces a one-parameter group of
transformations, which is prolonged to (t, q, q̇, q̈) space by insisting that
it respects (∗).

If the surface F = 0 is invariant: A symmetry group of the ODE.
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Symmetries reduce order

Each one-parameter symmetry group allows the reduction of order of
the differential equation by 1.

Recall the heat conduction example:
Rescaling symmetries reduce the order.

But not all symmetries are due to rescaling.
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Variational problems

J(q) =

∫ b

a

L(t, q, q̇) dt

How to minimize J(q)? Any stationary point of J must satisfy the
Euler–Lagrange equation

∂L

∂q
− d

dt

∂L

∂q̇
= 0

For example, L(t, q, q̇) = 1
2
q̇2 − V (q) produces this Euler–Lagrange

equation:

q̈ = −V ′(q)

Newton’s law for a free particle in a potential field V .
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Emmy Noether (1882-1935)
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Variational symmetries

These are one-parameter groups which leave the action integral

J(q) =

∫ b

a

L(t, q, q̇) dt

invariant.

Noether’s theorem establishes a one-to-one correspondence betwwen
variational symmetries and integrating factors, and hence invariants, of
the Euler–Lagrange equations.
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Famous conservation laws

Translational symmetry implies the conservation of momentum.

Rotational symmetry implies the conservation of angular momentum.

And time invariance implies the conservation of energy
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