Solution set 3

to some problems given for TMA4230 Functional analysis

Note: In my solutions the two "warmup" exercises from Kreyszig, I have replaced the subspace Y by N for consistency with the remaining problems.

Problem 2.1.14. Cosets form a partition of X : This means that every element of X is a member of some coset (in fact $x \in x+N$ since $y \in N$), and distinct cosets are disjoint (in fact, if $x \in(u+N) \cap(v+N)$, then $x-u \in N$ and $x-v \in N$ so that $u-v=(x-v)-(u-v) \in N$, and $u+N=v+N$ follows).

Checking the vector space axioms for X / N is easy and I will not do it here. A more important point is to check that the given vector space operations are well defined: That is, that the sum $(w+N)+(x+N)=(w+x)+N$ as defined in the problem does not depend on the particular choice of w and x used to represent their respective cosets. This is not hard either, but it is important.

Problem 2.3.14. An equivalent way to write the definition of the quotient norm is ${ }^{1}$

$$
\|[x]\|=\inf _{w \in[x]}\|w\|
$$

where $[x]$ is just shorthand notation for the coset $x+N$. Note that $w \in[x] \Leftrightarrow w-x \in N$. In fact, if we write $w=x-y$ with $y \in N$, the definition becomes

$$
\|[x]\|=\inf _{y \in N}\|x-y\|,
$$

which is just the distance from x to N.
In particular, if $[x] \neq 0$ then $x \notin N$, so that distance is positive (since N is closed), and so $\|[x]\|>0$.

For a scalar $c \neq 0$ we get

$$
\|c[x]\|=\|[c x]\|=\inf _{y \in N}\|c x-y\|=\inf _{y \in N}\|c x-c y\|=|c| \inf _{y \in N}\|x-y\|=|c|\|[x]\|
$$

where we have used $c y \in N \Leftrightarrow y \in N$. The equality holds for $c=0$ as well, though the above calculation makes less sense then.

Finally, for the triangle inequality, note that whenever $u^{\prime} \in[u]$ and $v^{\prime} \in[v]$ then $u^{\prime}+v^{\prime} \in$ $[u+v]$, so that $\|[u+v]\| \leq\left\|u^{\prime}\right\|+\left\|v^{\prime}\right\|$. Take the infimum over all $u^{\prime} \in[u]$ and $v^{\prime} \in[v]$ to conclude $\|[u+v]\| \leq\|[u]\|+\|[v]\|$.

Problem. Assume that X is a normed space and $N \subseteq X$ is a closed subspace. Show that the canonical map $Q: X \rightarrow X / N$ (defined by $Q(x)=[x]=x+N$) is open.
Solution. If $\|Q(x)\|<1$ then by construction of the norm, there exists some $w \in X$ with $\|w\|<1$ and $Q(x)=Q(w)$. Thus Q maps the open unit ball of X onto the open unit ball of X / N, and so Q is open.

Problem. Assume furthermore that $T: X \rightarrow Y$ is bounded, and $N \subseteq \operatorname{ker} T$. Show that there is a unique linear map $R: X / N \rightarrow Y$ so that $T=R Q$. What is its norm?
Solution. The requirement $T=R Q$ becomes $T x=R[x]$ for every $x \in X$. Since every member of X / N is of the form $[x]$, this shows the uniqueness of R (if it exists).

We must show that $R[x]=T x$ is well defined. If $[x]=[w]$ then $x-w \in N$. Then by assumption $T(x-w)=0$, so $T x=T w$. This proves that R is well defined.

It remains to prove that R is linear: But $R([w]+[x])=R[w+x]=T(w+x)=T w+T x=$ $R[w]+R[x]$, and $R(c[x])=R[c x]=T(c x)=c T x=c R[x]$.

[^0]Problem. Assume furthermore (still!) that $N=\operatorname{ker} T$. Show that T is open if and only if R has a bounded inverse.

Solution. If R has a bounded inverse then R is open. Since we have already proved that Q is open, it follows that $T=R Q$ is open.

On the other hand, if T is open then there exists M so that any $y \in Y_{1}$ (the closed unit ball of Y) can be written $y=T x$ with $x \in X$ and $\|x\|<M$. But then $y=R Q x$, and $\|Q x\| \leq\|x\| \leq M$. Thus R is open. In particular R maps X / N onto $Y . R$ is also injective, since $R[x]=0 \Leftrightarrow T x=0 \Leftrightarrow x \in N \Longleftrightarrow[x]=0$. An bijective open map has a bounded inverse.

Problem. Finally, a challenge: Use the closed graph theorem to prove the open mapping theorem. (Hint: Do it first for one-to-one mappings, then use the above results to get the general case.)
Solution. Assume X and Y are Banach spaces and $T: X \rightarrow Y$ is bounded, onty Y, and one-toone. Thus T has an inverse, and the graph of the inverse is $\{(T x, x): x \in X\}$, which is closed. (It is the image of the graph $\{(x, T x): x \in X\}$ of T under the isometry $X \times Y \rightarrow Y \times X$ given by $(x, y) \mapsto(y, x)$.) By the closed graph theorem then, T^{-1} is bounded, and so T is open.

For the general case, let $T: X \rightarrow Y$ be bounded and onto Y. Write $T=R Q$ as in the previous problems, where $N=\operatorname{ker} T$.

Now R is bounded, one-to-one and onto, so it has a bounded inverse by the first part. Thus T is open by the previous problem.

[^0]: ${ }^{1}$ I am dropping Kreyszig's subscript 0 on the quotient norm.

