
A two-fluid four-equation model with instantaneous
thermodynamical equilibrium

ALEXANDRE MORIN

Department of Energy and Process Engineering,
Norwegian University of Science and Technology (NTNU),

Kolbjørn Hejes vei 1B, NO-7491 Trondheim, Norway.
alexandre.morin [a] sintef.no

AND TORE FLÅTTEN
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Abstract

We analyse a four-equation version of a common two-fluid model for pipe flow, containing one mixture
mass equation and one mixture energy equation. The motivation is to obtain a fluid-dynamical model where the
mixture is in thermodynamical equilibrium at all time. We start from a five-equation model with instantaneous
thermal equilibrium, to which we add phase relaxation terms. An interfacial velocity appears, for which we give
an expression based on the second law of thermodynamics. We then derive the limit of this model when the
relaxation becomes instantaneous. The time derivatives appearing in this process are subsequently transformed
into spatial derivatives to be able to use numerical methods for conservation laws. The Jacobian matrix of the
fluxes can then be evaluated, and the system be put into quasilinear form. From the Jacobian matrix, we are able
to extract the sound speed intrinsic to the model. By comparison to the sound speed in other two-phase flow
models, we extend some previous results showing that the effect of relaxation on sound speed is independent of
the order in which the variables are relaxed. We also check the subcharacteristic condition and place the model
in a hierarchy of two-phase flow models. Finally, this model requires a regularisation term to be hyperbolic.
With the help of a perturbation method, we find an expression for this term that makes the model conditionally
hyperbolic. Two-phase flows, relaxation, two-fluid model, subcharacteristic condition

1 Introduction
One-dimensional two-phase flows in pipelines may be modelled using the two-fluid model ((Munkejord et al.
2009, Paillère et al. 2003, Stewart & Wendroff 1984, Toumi 1996)). The two-fluid model is characterised by the
fact that it has two momentum equations. Therefore, the phase velocities are independent from each other, as
opposed to the drift-flux model ((Flåtten et al. 2010, Murrone & Guillard 2005, Saurel et al. 2008)) where there
is only one momentum equation for the mixture. The six-equation version of the two-fluid model is used for
example in the nuclear industry ((Bestion 1990, WAHA3 Code Manual 2004)). In this version, the phases are in
mechanical equilibrium – they are at the same pressure at all time – but not in chemical and thermal equilibrium. A
five-equation version has been chosen for pipeline flow simulation ((Bendiksen et al. 1991)), in which the phases
are assumed to be in mechanical and thermal equilibrium. A seven-equation version, where the phases are allowed
to be totally out of equilibrium – both have their own pressure, temperature and chemical potential – has also been
derived ((Baer & Nunziato 1986, Saurel & Abgrall 1999)). One quality of the latter model is that it avoids the
non-hyperbolicity ((Gidaspow 1974, Stuhmiller 1977)) of the six-equation model.

Relaxation source terms may be added to the model to bring it towards equilibrium at a finite rate. This has
been studied for example by (Martı́nez Ferrer et al. 2012, Flåtten & Lund 2011, Karlsen et al. 2004, Natalini 1999,
Pareschi & G. Russo 2005, Saurel & Abgrall 1999, Tran et al. 2009). An equilibrium system may also be ap-
proached by a relaxation system with very stiff source terms ((Aursand et al. 2011)). For instance, the six-equation
model with a stiff temperature relaxation will behave similarly to the five-equation model with one mixture energy
equation. However, numerical methods for hyperbolic systems do not naturally handle algebraic source terms.
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Table 1: Main symbols.
Symbol Signification
c Speed of sound
Cp Specific heat capacity at constant pressure
e Internal energy
E Phasic total energy (E = αρ(e+1/2v2))
fi Components of the vector F
p Pressure
T Temperature
ui Components of the vector U
v Velocity
wi Components of the vector W
α Volume fraction

Symbol Signification
Γ First Grüneisen coefficient
ε Perturbation parameter
µ Chemical potential
ρ Density
A Jacobian
B Coefficient matrix in the non-conservative terms
F Vector of the fluxes
U Vector of the conserved variables
W Vector of the non-conservative variables
g Gas phase (Subscript)
` Liquid phase (Subscript)

With a splitting approach, the fluxes are advanced one time step alternately with the source terms. The latter are
solved using ordinary differential equation solvers. However, when the relaxation is instantaneous, it should di-
rectly affect the propagation speed of the waves. This time splitting may cause smearing of the discontinuities in
this case. Thus, it is preferable to use the equilibrium system.

For the simulation of the two-phase flow of a mixture with phase change, the equation of state plays an im-
portant role. For example, the Span-Wagner equation of state is accurate for two-phase mixtures of CO2 ((Span
& Wagner 1996)). However it is an equilibrium equation of state, which means that the fluid-dynamical model
must handle a mixture that is at equilibrium at all time. Therefore, a four-equation version of the two-fluid model
has to be derived in order to use such equilibrium-based equations of state. This model was mentioned by (Schor
et al. 1984). However, the treatment of the momentum-exchange terms due to phase change was not mentioned.
These terms require a careful treatment, because phase change becomes instantaneous. In the present paper, we
derive the four-equation model from the two-fluid five-equation model presented by (Martı́nez Ferrer et al. 2012),
where we replace the individual phase mass-equations by a mixture mass equation and an instantaneous chemical
equilibrium assumption. As mentioned in the previous paragraph, this will modify the wave structure of the model
compared to the initial five-equation model. In fact, this phenomenon has been studied, and a stability condition
has been derived, called the subcharacteristic condition ((Chen et al. 1994, Martı́nez Ferrer et al. 2012, Flåtten &
Lund 2011, Liu 1987a, Natalini 1999)). It says that for a relaxation system and its corresponding equilibrium sys-
tem, the speed of the waves of corresponding families will be lower in the equilibrium system than in the relaxation
system. (Martı́nez Ferrer et al. 2012) began to establish a hierarchy of two-phase flow models with respect to the
subcharacteristic condition, where they concentrated on velocity and thermal relaxation. In addition, they showed
that the sound speed is reduced by the same factor regardless of the order in which the relaxation processes are
performed.

The four-equation model thus derived is expected to be non-hyperbolic when the gas and liquid velocities
are different from each other. Therefore, we add to the derivation a regularising term. We choose to use an
interfacial pressure term of the sort often used with the six-equation two-fluid model ((Bestion 1990, Coquel et
al. 1997, Cortes et al. 1998, Evje & Flåtten 2003, Paillère et al. 2003, Toumi 1996)). We then obtain an explicit
expression for the pressure difference involved in this term. We do this with the help of a perturbation method
((Toumi & Kumbaro 1996, Toumi 1996)). It is interesting to remark that this term is identical to a well-known
form for the six-equation model ((Chang & Liou 2007, Evje & Flåtten 2003, Munkejord 2007, Munkejord et
al. 2009, Paillère et al. 2003, Stuhmiller 1977)).

The structure of the paper is as follows. In Section 2, we present the five-equation model, to which we add
relaxation source terms for phase change. These involve an interfacial momentum velocity, for which we derive
a precise expression with the help of entropy considerations. In Section 3, the four-equation model is analysed.
The phase change relaxation source term is expressed by means of derivatives, so that no algebraic terms remain
in the system. Also, the problematic time derivatives are transformed into spatial derivatives. Then, in Section 4,
the system is written in quasilinear form, which involves finding the Jacobian of the fluxes. In Section 5, the
speed of sound of the model is evaluated, and the subcharacteristic condition with respect to other two-phase flow
models verified. A main result of the present paper is the equation (5.18), which extends previous results on the
effect of relaxation on the speed of sound. In Section 6, we show how a perturbation method gives an expression
for the interfacial pressure difference that makes the model hyperbolic. Finally, in Section 7, we discuss the
phenomenon of resonance which is known to occur in the kind of two-fluid models we consider ((Isaacson &
Temple 1990, Liu 1987b, Morin et al. 2012)). Section 8 summarises the results of the paper. The main symbols
used are listed in Table 1. The other ones are introduced in the text.
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2 The five equation model with phase relaxation
The two-fluid five-equation model studied by (Martı́nez Ferrer et al. 2012) describes a one-dimensional two-phase
flow where the pressure and the temperature are kept equal in both phases at all times. This follows from the
assumption of instantaneous mechanical and thermal equilibrium. However, the two phases will in general not be
in chemical equilibrium. Algebraic relaxation terms representing phase change should then act to attract the phases
towards equilibrium. After addition of phase relaxation, the five-equation model becomes

∂αgρg

∂ t
+

∂αgρgvg

∂x
= K (µ`−µg), (2.1)

∂α`ρ`

∂ t
+

∂α`ρ`v`
∂x

= K (µg−µ`), (2.2)

∂αgρgvg

∂ t
+

∂αgρgv2
g

∂x
+αg

∂ p
∂x

= viK (µ`−µg), (2.3)

∂α`ρ`v`
∂ t

+
∂α`ρ`v2

`

∂x
+α`

∂ p
∂x

= viK (µg−µ`), (2.4)

∂ (Eg +E`)

∂ t
+

∂

∂x
((Eg +αg p)vg +(E`+α`p)v`) = 0, (2.5)

where

E = αρ

(
e+

1
2

v2
)
, (2.6)

K is a positive relaxation constant, µ is the chemical potential, and vi is some interface velocity. Assuming that
the phases are composed of only one component, we may express the chemical potential as

µ = e+
p
ρ
−T s. (2.7)

2.1 Interfacial momentum velocity
Through entropy considerations, we are able to give an expression for the interface velocity vi.

Proposition 1. If we assume that the interface velocity vi is independent of µg−µ`, the second law of thermody-
namics uniquely determines

vi =
1
2
(vg + v`). (2.8)

Proof. We will derive the mixture entropy evolution equation, and impose that the source term should be non-
negative. We first derive the kinetic energy evolution equations, by multiplying the momentum equations (2.3) and
(2.4) by vg and v` respectively. For the gas phase, after expansion of the derivatives, we obtain

v2
g

∂αgρg

∂ t
+αgρgvg

∂vg

∂ t
+ v2

g
∂αgρgvg

∂x
+αgρgv2

g
∂vg

∂x
+αgvg

∂ p
∂x

= vgviK (µ`−µg). (2.9)

The same applies to the liquid phase. After the use of the mass equation and reorganisation, the equations read

∂

∂ t

(
1
2

αgρgv2
g

)
+

∂

∂x

(
1
2

αgρgv3
g

)
+αgvg

∂ p
∂x

= vg

(
vi−

1
2

vg

)
K (µ`−µg), (2.10)

∂

∂ t

(
1
2

α`ρ`v2
`

)
+

∂

∂x

(
1
2

α`ρ`v3
`

)
+α`v`

∂ p
∂x

= v`

(
vi−

1
2

v`

)
K (µg−µ`). (2.11)

Using the latter equations, we can now cancel the kinetic energy contribution in the mixture total energy
equation (2.5), which gives

∂

∂ t

(
αgρgeg +α`ρ`e`

)
+

∂

∂x

(
αgρgegvg +α`ρ`e`v`

)
+ p

∂αgvg

∂x
+ p

∂α`v`
∂x

= (vg− v`)
(

vi−
1
2
(vg + v`)

)
K (µg−µ`). (2.12)



2 THE FIVE EQUATION MODEL WITH PHASE RELAXATION 4

By the mass equation, we obtain an evolution equation for the material derivatives of the phasic internal energy

αgρg
Dgeg

Dt
+α`ρ`

D`e`
Dt

+ p
∂αgvg

∂x
+ p

∂α`v`
∂x

=

(
(vg− v`)

(
vi−

1
2
(vg + v`)

)
+ eg− e`

)
K (µg−µ`), (2.13)

where we have introduced the phase specific material derivative Dk
Dt =

∂

∂ t + vk
∂

∂x .
Using the fundamental thermodynamic relation

de =
p

ρ2 dρ +T ds, (2.14)

we can transform the previous equation into an entropy equation. First, (2.14) is expressed in terms of material
derivatives and substituted in the internal energy equation (2.13)

αgρg

(
T

Dgsg

Dt
+

p
ρ2

g

Dgρg

Dt

)
+α`ρ`

(
T

D`s`
Dt

+
p

ρ2
`

D`ρ`

Dt

)
+ p

∂αgvg

∂x
+ p

∂α`v`
∂x

=

(
(vg− v`)

(
vi−

1
2
(vg + v`)

)
+ eg− e`

)
K (µg−µ`). (2.15)

By the mass equations (2.1)–(2.2), it can be simplified to

αgρgT
Dgsg

∂ t
+α`ρ`T

D`s`
∂ t

=

(
(vg− v`)

(
vi−

1
2
(vg + v`)

)
+ eg +

p
ρg
− e`−

p
ρ`

)
K (µg−µ`), (2.16)

and using again the mass equations, we obtain the evolution equation for the mixture entropy

T
(

∂αgρgsg

∂ t
+

∂α`ρ`s`
∂ t

+
∂αgρgsgvg

∂x
+

∂α`ρ`s`v`
∂x

)
=

(
(vg− v`)

(
vi−

1
2
(vg + v`)

)
+µg−µ`

)
K (µg−µ`) (2.17)

since the chemical potential can be expressed as in (2.7). Let us name the right-hand side as

S =

(
(vg− v`)

(
vi−

1
2
(vg + v`)

)
+µg−µ`

)
K (µg−µ`), (2.18)

where we remind that K > 0. It may be written as

S = K
(
wz+ z2) , (2.19)

where

w = (vg− v`)
(

vi−
1
2
(vg + v`)

)
, (2.20)

z = µg−µ`. (2.21)

Now, the second law of thermodynamics imposes

S ≥ 0. (2.22)

For any given set of velocities, the entropy production attains its minimum when

dS

dz
= K (w+2z) = 0, (2.23)

hence when
z =−w

2
. (2.24)
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Inserting this into (2.19), we obtain

S =−K
w2

4
. (2.25)

Thus, the second law of thermodynamics imposes

w = 0, (2.26)

which uniquely determines

vi =
1
2
(vg + v`). (2.27)

This is the same expression as proposed by (Stewart & Wendroff 1984), though it was not physically motivated.

3 The four-equation model
We wish to derive a four-equation model from the above five-equation model, where we assume the phase change
to be instantaneous. The two phases will then at all times be in equilibrium. This is achieved by letting K →∞ in
the model (2.1)–(2.5). Since the repartition of the mass in the phases now is entirely governed by thermodynamics,
we only need one mixture mass evolution equation, instead of one for each phase as in (2.1)–(2.2). We therefore
sum (2.1) and (2.2) to give the mixture mass evolution equation of the four-equation model

∂ (αgρg +α`ρ`)

∂ t
+

∂ (αgρgvg +α`ρ`v`)
∂x

= 0, (3.1)

and specify µg = µ`. The remaining three other evolution equations of the four-equation model are the same as in
the five-equation model (2.3)–(2.5). However, since K → ∞ and µg = µ`, K (µg− µ`) is an undefined limit. It
needs to be substituted using the phase mass equations (2.1) and (2.2). This gives the model ((Schor et al. 1984))

∂ (αgρg +α`ρ`)

∂ t
+

∂ (αgρgvg +α`ρ`v`)
∂x

= 0, (3.2)

∂αgρgvg

∂ t
+

∂αgρgv2
g

∂x
+αg

∂ p
∂x

=
vg + v`

2

(
∂αgρg

∂ t
+

∂αgρgvg

∂x

)
, (3.3)

∂α`ρ`v`
∂ t

+
∂α`ρ`v2

`

∂x
+α`

∂ p
∂x

=
vg + v`

2

(
∂α`ρ`

∂ t
+

∂α`ρ`v`
∂x

)
, (3.4)

∂ (Eg +E`)

∂ t
+

∂

∂x
((Eg +αg p)vg +(E`+α`p)v`) = 0. (3.5)

Further, the internal energy equation becomes

∂

∂ t

(
αgρgeg +α`ρ`e`

)
+

∂

∂x

(
αgρgegvg +α`ρ`e`v`

)
+ p

∂αgvg

∂x
+ p

∂α`v`
∂x

= 0. (3.6)

In the entropy equation (2.17), since K (µg−µ`) is finite, we have that K (µg−µ`)
2→ 0. The entropy equation

becomes
∂αgρgsg

∂ t
+

∂α`ρ`s`
∂ t

+
∂αgρgsgvg

∂x
+

∂α`ρ`s`v`
∂x

= 0. (3.7)

Now, to be able to have the model in quasilinear form, we first need to express the time derivatives ∂tαgρg and
∂tα`ρ` in terms of spatial derivatives.

3.1 Some differentials
Some useful differentials can be derived from the assumptions of equilibrium.

Proposition 2. The differential of the pressure can be related to that of the temperature by(
1
ρg
− 1

ρ`

)
d p =

L
T

dT, (3.8)

where
L = eg +

p
ρg
− e`−

p
ρ`

(3.9)

is the latent heat.
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Proof. From the expression of the thermodynamic potential (2.7) and the fundamental thermodynamic relation
(2.14), we obtain

dµ =
1
ρ

dp− sdT. (3.10)

Since µg = µ`, we can write (
1
ρg
− 1

ρ`

)
dp = (sg− s`)dT. (3.11)

Remark that, with the Clapeyron equation, we can write

sg− s` =
L
T
. (3.12)

Thus the differential becomes (
1
ρg
− 1

ρ`

)
d p =

L
T

dT. (3.13)

Then, we can obtain simplified entropy and internal energy differentials.

Proposition 3. The entropy differential for the gas phase is

dsg =−Cp,gχg dp, (3.14)

and the internal energy differential for the liquid phase is

deg =

(
p

ρ2
g c2

g
Ψg−TCp,gχg

)
d p, (3.15)

where

χg =
Γg

ρgc2
g
+

ρg−ρ`

ρgρ`L
, (3.16)

χ` =
Γ`

ρ`c2
`

+
ρg−ρ`

ρgρ`L
, (3.17)

and

Ψg = 1+ρgTCp,gΓgχg, (3.18)
Ψ` = 1+ρ`TCp,`Γ`χ`. (3.19)

The counterpart for the liquid phase of these differentials is found by symmetry of the phases.

Proof. An entropy differential may be found in (Flåtten & Lund 2011). For the gas phase, it reads

dsg =−
ΓgCp,g

ρgc2
g

dp+
Cp,g

T
dT, (3.20)

which with the help of (3.8) becomes

dsg =−Cp,g

(
Γg

ρgc2
g
+

ρg−ρ`

ρgρ`L

)
d p. (3.21)

To simplify the results, the shorthands (3.16) and (3.18) have been defined for expressions which repetitively
appear in the present article. This gives the result (3.14).

On the other hand, an internal energy differential may be found in (Flåtten et al. 2010). For the gas phase, it
reads

deg =

(
∂eg

∂T

)
p

dT +

(
∂eg

∂ p

)
T

dp

=Cp,g

(
1−

Γg p
ρgc2

g

)
dT +

(
p

ρ2
g c2

g
−

ΓgT
ρgc2

g
Cp,g

(
1−

Γg p
ρgc2

g

))
dp,

(3.22)
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which can be written through (3.8) as

deg =
1

ρgc2
g

(
p

ρg
−TCp,g(ρgc2

g−Γg p)

(
ρg−ρ`

ρgρ`L
+

Γg

ρgc2
g

))
dp. (3.23)

Using the shorthands (3.16) and (3.18), this gives the result (3.15). Note that this expression may be written,
through (3.14), as

deg =
p

ρ2
g c2

g
Ψg d p+T dsg. (3.24)

3.2 Treatment of the time derivatives
The momentum equations (3.3) and (3.4) contain time derivatives, which we wish to convert to spatial derivatives.

Proposition 4. The relaxed gas-phase mass equation may be written as

∂αgρg

∂ t
+

∂αgρgvg

∂x
=−P

∂ p
∂x
−V

(
∂αgvg

∂x
+

∂α`v`
∂x

)
, (3.25)

where

V =
T (αgρgCp,gχg +α`ρ`Cp,`χ`)

L
(

αg
ρgc2

g
Ψg +

α`

ρ`c2
`
Ψ`

)
+T (αgρgCp,gχg +α`ρ`Cp,`χ`)

ρg−ρ`
ρgρ`

, (3.26)

P =
αgα`T (vg− v`)

(
ρ`Cp,`χ`

Ψg
ρgc2

g
−ρgCp,gχg

Ψ`

ρ`c2
`

)
L
(

αg
ρgc2

g
Ψg +

α`

ρ`c2
`
Ψ`

)
+T (αgρgCp,gχg +α`ρ`Cp,`χ`)

ρg−ρ`
ρgρ`

. (3.27)

This expression can be substituted in the momentum equation for the gas phase (3.3), thus eliminating the time
derivatives. For the liquid phase, the relaxed mass equation reads

∂α`ρ`

∂ t
+

∂α`ρ`v`
∂x

= P
∂ p
∂x

+V

(
∂αgvg

∂x
+

∂α`v`
∂x

)
. (3.28)

Proof. From the differentials (3.14) and (3.15) as well as the mixture mass equation (3.2), internal energy equa-
tion (3.6) and entropy equation (3.7), we are able to find three relations between ∂t p, ∂tαgρg and ∂tα`ρ` and spatial
derivatives. Therefore we can find an expression for each of the time derivatives.

The first relation is the mass equation (3.2)

∂ (αgρg +α`ρ`)

∂ t
+

∂ (αgρgvg +α`ρ`v`)
∂x

= 0. (3.29)

Then, the derivatives are expanded in the entropy equation (3.7). The derivatives ∂tsk and ∂xsk are subsequently
substituted using the entropy differential (3.14) to obtain a second relation

− (αgρgCp,gχg +α`ρ`Cp,`χ`)
∂ p
∂ t
− (αgρgCp,gχgvg +α`ρ`Cp,`χ`v`)

∂ p
∂x

+ sg
∂αgρg

∂ t
+ s`

∂α`ρ`

∂ t
+ sg

∂αgρgvg

∂x
+ s`

∂α`ρ`v`
∂x

= 0. (3.30)

Finally, the same treatment is applied to the internal energy equation (3.6) with the differential (3.15), which
gives a third relation(

αgρg

(
p

ρ2
g c2

g
Ψg−TCp,gχg

)
+α`ρ`

(
p

ρ2
` c2

`

Ψ`−TCp,`χ`

))
∂ p
∂ t

+

(
αgρg

(
p

ρ2
g c2

g
Ψg−TCp,gχg

)
vg +α`ρ`

(
p

ρ2
` c2

`

Ψ`−TCp,`χ`

)
v`

)
∂ p
∂x

+ eg
∂αgρg

∂ t
+ e`

∂α`ρ`

∂ t
+ eg

∂αgρgvg

∂x
+ e`

∂α`ρ`v`
∂x

+ p
∂αgvg

∂x
+ p

∂α`v`
∂x

= 0. (3.31)
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Solving these three relations, we obtain the relaxed gas-phase mass equation (3.25). To find the equation for
the liquid phase, we remark that the mixture mass equation (3.2) gives

∂α`ρ`

∂ t
+

∂α`ρ`v`
∂x

=−
∂αgρg

∂ t
−

∂αgρgvg

∂x
, (3.32)

which gives the result through (3.25).

3.3 Regularising term
As with the six- and five-equation two-fluid models, we expect the present four-equation model not to be hyperbolic
when the gas and liquid velocities are different from each other ((Gidaspow 1974, Stuhmiller 1977)). The eigen-
values associated with the volume-fraction waves are expected to be complex. We choose to include a regularising
term similar to the interfacial-pressure regularising term for the six-equation two-fluid model ((Bestion 1990, Co-
quel et al. 1997, Cortes et al. 1998, Evje & Flåtten 2003, Paillère et al. 2003, Toumi 1996)). It consists in applying
a pressure difference ∆p between the two phases. The momentum equations are transformed into

∂αgρgvg

∂ t
+

∂αgρgv2
g

∂x
+αg

∂ p
∂x

+∆p
∂αg

∂x
=

vg + v`
2

(
∂αgρg

∂ t
+

∂αgρgvg

∂x

)
, (3.33)

and

∂α`ρ`v`
∂ t

+
∂α`ρ`v2

`

∂x
+α`

∂ p
∂x

+∆p
∂α`

∂x
=

vg + v`
2

(
∂α`ρ`

∂ t
+

∂α`ρ`v`
∂x

)
, (3.34)

while the mass and energy equations are not modified.

3.4 Expression of the model
As a result of the present section, the four-equation model (3.2)–(3.5) can be written, using (3.25), (3.28), (3.33)
and (3.34), in the following form

∂ (αgρg +α`ρ`)

∂ t
+

∂ (αgρgvg +α`ρ`v`)
∂x

= 0, (3.35)

∂αgρgvg

∂ t
+

∂αgρgv2
g

∂x
+

(
αg +

vg + v`
2

P

)
∂ p
∂x

+
vg + v`

2
V

∂ (αgvg +α`v`)
∂x

+∆p
∂αg

∂x
= 0, (3.36)

∂α`ρ`v`
∂ t

+
∂α`ρ`v2

`

∂x
+

(
α`−

vg + v`
2

P

)
∂ p
∂x
−

vg + v`
2

V
∂ (αgvg +α`v`)

∂x
+∆p

∂α`

∂x
= 0, (3.37)

∂ (Eg +E`)

∂ t
+

∂

∂x
((Eg +αg p)vg +(E`+α`p)v`) = 0. (3.38)

4 Quasilinear form
We wish to write the model in quasilinear form

∂U
∂ t

+A(U)
∂U
∂x

= 0, (4.1)

where the vector of variables U is defined as

U =


αgρg +α`ρ`

αgρgvg
α`ρ`v`
Eg +E`

 . (4.2)

The matrix A(U) is the Jacobian of the flux. The flux is split into a conservative and a non-conservative part, such
that the system can be written as

∂U
∂ t

+
∂Fc(U)

∂x
+B(U)

∂W (U)

∂x
= 0, (4.3)
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where the conservative flux is

Fc(U) =


αgρgvg +α`ρ`v`

αgρgv2
g

α`ρ`v2
`

(Eg +αg p)vg +(E`+α`p)v`

 , (4.4)

while the non-conservative contributions are

B(U) =


0 0 0

αg +
vg+v`

2 P
vg+v`

2 V ∆p
α`−

vg+v`
2 P − vg+v`

2 V −∆p
0 0 0

 and W =

 p
αgvg +α`v`

αg

 . (4.5)

4.1 Some differentials
In order to write the Jacobian of the fluxes, we need to express the differentials of some variables in terms of the
differential of the components of the variable vector U . We will find them with the help of the fundamental relation
of thermodynamics (2.14) as well as the differentials of the components of the vector U . First, we will express all
the differentials in terms of the differential of the gas density. Then, the other differentials will follow.

Proposition 5. The density differential may be expressed in terms of the differentials of the variable-vector com-
ponents ui as

dρg =
1
Φ

Ψg

c2
g

(
E

ρg−ρ`
du1− vg du2− v` du3 +du4

)
(4.6)

where we have used the following shorthands

Φ = αg
p

ρgc2
g

Ψg +α`
p

ρ`c2
`

Ψ`−
(
αgρgTCp,gχg +α`ρ`TCp,`χ`

)
+

1
ρg−ρ`

(
−eg +

1
2

v2
g + e`−

1
2

v2
`

)(
αgρ`

Ψg

c2
g
+α`ρg

Ψ`

c2
`

)
(4.7)

and

E =−ρg

(
eg−

1
2

v2
g

)
+ρ`

(
e`−

1
2

v2
`

)
. (4.8)

Proof. We recall from the previous section the differential (3.24)

deg =
p

ρ2
g c2

g
Ψg d p+T dsg. (4.9)

By identification with the fundamental thermodynamic relation (2.14), we can deduce

Ψg dp = c2
g dρg, (4.10)

and using the relation between pressure and temperature differentials (3.8), we obtain

−Ψg
ρgρ`L

T (ρg−ρ`)
dT = c2

g dρg. (4.11)

Now, we write the differential of the thermodynamic potentials for both phases in terms of their respective
density differentials, using (4.10) and (4.11)

dµg =
1
ρg

dp− sg dT =
1
ρg

c2
g

Ψg
dρg + sg

c2
g

Ψg

T (ρg−ρ`)

ρgρ`L
dρg (4.12)

dµ` =
1
ρ`

d p− s` dT =
1
ρ`

c2
`

Ψ`
dρ`+ s`

c2
`

Ψ`

T (ρg−ρ`)

ρgρ`L
dρ` (4.13)

and equate them, using the assumption of chemical equilibrium. Implicitly, we also use the mechanical and thermal
equilibrium assumptions, since we have expressed the pressure and temperature differentials in terms of the gas as
well as of the liquid phase variables. This gives a relation between the density differentials:

c2
g

Ψg
dρg =

c2
`

Ψ`
dρ`. (4.14)



4 QUASILINEAR FORM 10

Next, we need a relation for the energy differentials. For the gas phase, we find it using the differential of
p(ρg,eg)

d p =

(
c2

g−Γg
p

ρg

)
dρg +Γgρg deg, (4.15)

where d p is replaced using (3.15). After simplification, we obtain

Ψg(
p

ρ2
g c2

g
Ψg−TCp,gχg

) deg = c2
g dρg. (4.16)

For the liquid phase, we first use the phase symmetry to obtain

Ψ`(
p

ρ2
` c2

`
Ψ`−TCp,`χ`

) de` = c2
` dρ`, (4.17)

and then replace the liquid density differential using (4.14)

1(
p

ρ2
` c2

`
Ψ`−TCp,`χ`

) de` =
c2

g

Ψg
dρg. (4.18)

Further, we seek an expression for the differential of the volume fraction. From the differential of the first
component of the vector U , we have

du1 = αg dρg +α` dρ`+(ρg−ρ`)dαg, (4.19)

where ρ` is eliminated using the differential (4.14)

(ρg−ρ`)dαg = du1−

(
αg +α`

c2
gΨ`

c2
`Ψg

)
dρg. (4.20)

Finally, we would like to find an expression for the velocity differentials. For the gas phase, we start from the
differential of the second component of the vector U

du2 = d(αgρgvg) = αgρg dvg +αgvg dρg +ρgvg dαg, (4.21)

where dαg is replaced using (4.20) to obtain

αgρg dvg =−
ρgvg

ρg−ρ`
du1 +du2 +

vg

ρg−ρ`

(
αgρ`+α`ρg

c2
gΨ`

c2
`Ψg

)
dρg. (4.22)

By phase symmetry, we deduce that

α`ρ` dv` =
ρ`v`

ρg−ρ`
du1 +du3−

v`
ρg−ρ`

(
α`ρg +αgρ`

c2
`Ψg

c2
gΨ`

)
dρ`. (4.23)

In order to express it in terms of the differential for the gas density, we use (4.14) to obtain

α`ρ` dv` =
ρ`v`

ρg−ρ`
du1 +du3−

v`
ρg−ρ`

(
αgρ`+α`ρg

c2
gΨ`

c2
`Ψg

)
dρg. (4.24)

Now, using the differential of the mixture internal energy, we are able to deduce a differential for the gas density
dρg. We have that

d(αgρgeg)+d(α`ρ`e`) = du4−
vg

2
du2−

v`
2

du3−
1
2

αgρgvg dvg−
1
2

α`ρ`v` dv`. (4.25)

After having replaced all the differentials using the expressions (4.14), (4.16), (4.18), (4.20), (4.22) and (4.24)
previously derived, we obtain the density differential 4.6.
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All the other differentials now follow. The differential of the volume fraction follows from (4.20) in which dρg
is replaced using (4.6)

dαg =
1

ρg−ρ`
du1−

1
ρg−ρ`

1
Φ

(
αg

Ψg

c2
g
+α`

Ψ`

c2
`

)(
E

ρg−ρ`
du1− vg du2− v` du3 +du4

)
. (4.26)

The differential of the pressure follows from (4.10)

dp =
1
Φ

(
E

ρg−ρ`
du1− vg du2− v` du3 +du4

)
. (4.27)

The differential of the liquid density follows from (4.14)

dρ` =
1
Φ

Ψ`

c2
`

(
E

ρg−ρ`
du1− vg du2− v` du3 +du4

)
. (4.28)

The differentials of the internal energies follow from (4.16) and (4.18)

deg =
1
Φ

(
p

ρ2
g c2

g
Ψg−TCp,gχg

)(
E

ρg−ρ`
du1− vg du2− v` du3 +du4

)
, (4.29)

de` =
1
Φ

(
p

ρ2
` c2

`

Ψ`−TCp,`χ`

)(
E

ρg−ρ`
du1− vg du2− v` du3 +du4

)
. (4.30)

The differentials of the velocities follow from (4.22) and (4.24)

αgρg dvg =−
ρgvg

ρg−ρ`
du1 +du2+

1
Φ

vg

ρg−ρ`

·

(
αgρ`

Ψg

c2
g
+α`ρg

Ψ`

c2
`

)(
E

ρg−ρ`
du1− vg du2− v` du3 +du4

)
,

(4.31)

α`ρ` dv` =
ρ`v`

ρg−ρ`
du1 +du3−

1
Φ

v`
ρg−ρ`

·

(
αgρ`

Ψg

c2
g
+α`ρg

Ψ`

c2
`

)(
E

ρg−ρ`
du1− vg du2− v` du3 +du4

)
.

(4.32)

4.2 Jacobian of the fluxes
We are now able to derive the Jacobian of the conservative fluxes Fc(U) (4.4) and of the vector W (U) in the non-
conservative fluxes (4.5). To do so, we express the differentials of the components of the vectors Fc(U) and W (U)
in terms of the differentials of the components of U . First, we simply have

d f1 = d(αgρgvg +α`ρ`v`) = du2 +du3. (4.33)

Then for the second component

d f2 = d(αgρgv2
g) = vg d(αgρgvg)+αgρgvg dvg = vg du2 +αgρgvg dvg, (4.34)

where dvg is substituted using (4.31)

d f2 =−
ρgv2

g

ρg−ρ`
du1 +2vg du2 +

1
Φ

v2
g

ρg−ρ`

·

(
αgρ`

Ψg

c2
g
+α`ρg

Ψ`

c2
`

)(
E

ρg−ρ`
du1− vg du2− v` du3 +du4

)
. (4.35)

Similarly, for the third component
d f3 = v` du3 +α`ρ`v` dv`, (4.36)
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where dv` is substituted using (4.32)

d f3 =
ρ`v2

`

ρg−ρ`
du1 +2v` du3−

1
Φ

v2
`

ρg−ρ`

·

(
αgρ`

Ψg

c2
g
+α`ρg

Ψ`

c2
`

)(
E

ρg−ρ`
du1− vg du2− v` du3 +du4

)
. (4.37)

Finally, the fourth component can be written as

d f4 =
1
2

v2
g du2 +

1
2

v2
` du3 +(ρgegvg + vg p−ρ`e`v`− v`p)dαg

+(αgvg +α`v`)dp+αgegvg dρg +α`e`v` dρ`+αgρgvg deg +α`ρ`v` de`

+
(
αgρg

(
eg + v2

g
)
+αg p

)
dvg +

(
α`ρ`

(
e`+ v2

`

)
+α`p

)
dv`, (4.38)

which after replacement of the differentials and simplification becomes

d f4 =
−ρgv3

g +ρ`v3
`

ρg−ρ`
du1 +

(
eg +

3
2

v2
g +

p
ρg

)
du2 +

(
e`+

3
2

v2
` +

p
ρ`

)
du3

+
1
Φ

[
v3

g− v3
`

ρg−ρ`

(
αgρ`

Ψg

c2
g
+α`ρg

Ψ`

c2
`

)
+αgvg +α`v`−T (αgρgvgCp,gχg +α`ρ`v`Cp,`χ`)

]

·
(

E

ρg−ρ`
du1− vg du2− v` du3 +du4

)
. (4.39)

Similarly, for the non-conservative part of the fluxes, we need to derive a Jacobian matrix for the vector W .
First, we can remark that

dw1 = dp, (4.40)

which gives after substitution of the differentials

dw1 =
1
Φ

(
E

ρg−ρ`
du1− vg du2− v` du3 +du4

)
. (4.41)

For the second component, we have that

dw2 = d(αgvg +α`v`) =
1
ρg

(du2−αgvg dρg)+
1
ρ`

(du3−α`v` dρ`), (4.42)

which gives

dw2 =
1
ρg

du2 +
1
ρ`

du3−
1
Φ

(
αgvg

Ψg

ρgc2
g
+α`v`

Ψ`

ρ`c2
`

)

·
(

E

ρg−ρ`
du1− vg du2− v` du3 +du4

)
. (4.43)

Finally, the third component is the volume fraction differential (4.26)

dw3 = dαg, (4.44)

thus

dw3 =
1

ρg−ρ`
du1−

1
ρg−ρ`

1
Φ

(
αg

Ψg

c2
g
+α`

Ψ`

c2
`

)
·
(

E

ρg−ρ`
du1− vg du2− v` du3 +du4

)
. (4.45)

4.3 The matrices in the quasilinear form
We can now write the matrix A(U) appearing in the quasilinear form (4.1). Following a flux-splitting strategy (see
for example (Evje & Flåtten 2003)), we may split the matrix in a conservative part and a non-conservative part.
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With the help of (4.33), (4.35), (4.37) and (4.39), the conservative part is written as

Ac(U) =
∂Fc(U)

∂U
=


0 1 1 0

− ρgv2
g

ρg−ρ`
+

v2
gE

ρg−ρ`
Σρ 2vg− v3

gΣρ −v2
gv`Σρ v2

gΣρ

ρ`v2
`

ρg−ρ`
− v2

`E
ρg−ρ`

Σρ vgv2
`Σρ 2v`+ v3

`Σρ −v2
`Σρ

a41 a42 a43 (v3
g− v3

`)Σρ +Ω

 (4.46)

where

a41 =
−ρgv3

g +ρ`v3
`

ρg−ρ`
+
(
(v3

g− v3
`)Σρ +Ω

) E

ρg−ρ`
, (4.47)

a42 =

(
eg +

3
2

v2
g +

p
ρg

)
−
(
(v3

g− v3
`)Σρ +Ω

)
vg, (4.48)

a43 =

(
e`+

3
2

v2
` +

p
ρ`

)
−
(
(v3

g− v3
`)Σρ +Ω

)
v`. (4.49)

We have also introduced the shorthands

Σρ =
1
Φ

1
(ρg−ρ`)

(
αgρ`

Ψg

c2
g
+α`ρg

Ψ`

c2
`

)
(4.50)

and
Ω =

1
Φ

(
αgvg +α`v`−αgρgvgTCp,gχg−α`ρ`v`TCp,`χ`

)
. (4.51)

For the non-conservative part, we can express the Jacobian of the vector W (U) using (4.41), (4.43) and (4.45)

M(U) =
∂W (U)

∂U
=


1
Φ

E
ρg−ρ`

− vg
Φ

− v`
Φ

1
Φ

− E
ρg−ρ`

Σv
1

ρg
+ vgΣv

1
ρ`
+ v`Σv −Σv

1
ρg−ρ`

− E
ρg−ρ`

Σ vgΣ v`Σ −Σ

 (4.52)

where

Σ =
1
Φ

1
ρg−ρ`

(
αg

Ψg

c2
g
+α`

Ψ`

c2
`

)
, (4.53)

Σv =
1
Φ

(
αgvg

Ψg

ρgc2
g
+α`v`

Ψ`

ρ`c2
`

)
. (4.54)

The Jacobian of the non-conservative fluxes then follows from

Ap(U) = B(U) ·M(U). (4.55)

The Jacobian of the whole system is then

A(U) = Ac(U)+Ap(U). (4.56)

5 Subcharacteristic condition
The subcharacteristic condition is a stability condition which states that the stiff limit of a relaxation model –
called the equilibrium model – can only be stable if the wave speeds of the equilibrium system do not exceed the
speeds of the corresponding waves of its relaxation system ((Chen et al. 1994, Flåtten & Lund 2011, Liu 1987a,
Natalini 1999)). We expect the two-fluid models mentioned in the present paper to respect this condition since
the underlying physical models describe a stable reality. Figure 1 presents the model hierarchy, where TF and DF,
respectively, denote the two-fluid and the drift-flux models, and the index, the number of conservation equations
in the model. Each arrow designates the relaxation performed from one model to the next. The subcharacteristic
condition has been proved for some of the relaxation processes by (Martı́nez Ferrer et al. 2012) and (Flåtten &
Lund 2011). In the present section, we prove the subcharacteristic condition for the remaining relaxation processes
TF5→ TF4 and TF4→ DF3.
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TF7
p

TF6
T

v

TF5
µ

v

TF4

v

DF5
T

DF4
µ

DF3

Figure 1: Hierarchy of the two-phase flow models. TF: two-phase model. DF: drift-flux model. Index: Number of
conservation equations.

5.1 Speed of sound
The eigenvalues of the Jacobian of the fluxes A(U) are the propagation velocities of the quantities defined by the
eigenvectors of A(U), also called waves. In the present model, these waves are the volume-fraction waves and the
pressure waves.

Proposition 6. When the liquid and gas velocities are equal to each other, the eigenvalues of the two-fluid four-
equation model are

ΛTF4 =


vm− cTF4

vm
vm

vm + cTF4

 , (5.1)

where the velocities have been substituted by vg = vm and v` = vm, and the speed of sound of the model is given by

cTF4 =

√√√√ α`ρg +αgρ`

ρgρ`

(
αg

ρgc2
g
+ α`

ρ`c2
`
+T (αgρgCp,gχ2

g +α`ρ`Cp,`χ
2
` )
) . (5.2)

Proof. When vg = 0 and v` = 0, the matrix A(U) becomes

A(U(vg = 0,v` = 0)) =


0 1 1 0

αg(ρgeg−ρ`e`)c2
TF4

(α`ρg+αgρ`)T (sg−s`)
0 0 − αg(ρg−ρ`)c2

TF4
(α`ρg+αgρ`)T (sg−s`)

α`(ρgeg−ρ`e`)c2
TF4

(α`ρg+αgρ`)T (sg−s`)
0 0 − α`(ρg−ρ`)c2

TF4
(α`ρg+αgρ`)T (sg−s`)

0 eg +
p

ρg
e`+

p
ρ`

0

 , (5.3)

where

cTF4 =

√√√√ α`ρg +αgρ`

ρgρ`

(
αg

ρgc2
g
Ψg +

α`

ρ`c2
`
Ψ`+T (αgρgCp,gχg +α`ρ`Cp,`χ`)

ρg−ρ`
ρgρ`L

) . (5.4)

Its eigenvalues are then 0,0,cTF4 and −cTF4. The waves with zero velocity are the volume-fraction waves, while
the two other are the pressure waves. We deduce that cTF4 is the speed of sound of the model. This speed of
sound is dependent on the thermodynamical assumptions, here that the phases are at all times at equilibrium. The
expression (5.4) uses the variable blocks that are involved in the Jacobian matrices. We can also reorganise it to
the more compact form 5.2.

Note that the speed of sound can be used to simplify (3.26) and (3.27)

V =
ρgρ`

α`ρg +αgρ`

T
L
(αgρgCp,gχg +α`ρ`Cp,`χ`)c2

TF4, (5.5)

P =
αgα`ρgρ`(vg− v`)

α`ρg +αgρ`

T
L

(
ρ`Cp,`χ`

Ψg

ρgc2
g
−ρgCp,gχg

Ψ`

ρ`c2
`

)
c2

TF4. (5.6)

The eigenstructure for the general case is not accessible. However, when vg = v`, we are able to find the exact
eigenvalues of the system. For this, we write the characteristic polynomial of the matrix A(U) where the velocities
have been substituted with vg = vm and v` = vm

ΠA,vg=v` = Det(A(Uvg=v`)−λ · I4), (5.7)
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where I4 is the identity matrix of rank 4. This polynomial can be simplified to

ΠA,vg=v` = (λ − vm)
2 · (λ − (vm + cTF4)) · (λ − (vm− cTF4)), (5.8)

which is solved by the eigenvalues presented in (5.1).

5.2 Speed of sound in other models
The speed of sound of the five-equation model is given by (Martı́nez Ferrer et al. 2012). In order to express it in
terms of the parameters used in the present article, we first derive a relation. In (Martı́nez Ferrer et al. 2012), the
parameter

ζ =

(
∂T
∂ p

)
s
=− 1

ρ2

(
∂ρ

∂ s

)
p

(5.9)

is used. The triple product rule gives

ζ =
1

ρ2

(
∂ p
∂ s

)
ρ

/(
∂ p
∂ρ

)
s
, (5.10)

where (
∂ p
∂ρ

)
s
= c2, (5.11)

and, from (Munkejord et al. 2009), (
∂ p
∂ s

)
ρ

= ΓρT. (5.12)

Thus
ζ =

ΓT
ρc2 . (5.13)

The speed of sound in the five-equation model, taken from (Martı́nez Ferrer et al. 2012) and simplified, is

cTF5 =

√√√√√√√√
αgρ`+α`ρg

ρgρ`

 αg
ρgc2

g
+ α`

ρ`c2
`
+

αgρgCp,gα`ρ`Cp,`T
(

Γg
ρgc2

g
− Γ`

ρ`c2
`

)2

αgρgCp,g+α`ρ`Cp,`


. (5.14)

We also know from (Flåtten & Lund 2011) the speed of sound in the drift-flux three-equation model. This
model can be seen as the limit of the drift-flux four-equation model with instantaneous phase relaxation, or as the
limit of the two-fluid four-equation model (3.35)–(3.38) with instantaneous velocity relaxation. This is obtained
by summing equations (3.36) and (3.37) and assuming vg = v`. After simplification, the speed of sound can be
written

cDF3 =
1√

(αgρg +α`ρ`)
(

αg
ρgc2

g
+ α`

ρ`c2
`
+T (αgρgCp,gχ2

g +α`ρ`Cp,`χ
2
` )
) . (5.15)

5.3 Comparison of the speeds of sound
(Martı́nez Ferrer et al. 2012) compared the speeds of sound of four of the two-phase flow models in Figure 1 – the
TF6, TF5, DF5 and DF4 models. They showed that the effect of the instantaneous relaxation of a given type on the
mixture speed of sound is independent of the order in which relaxations are performed. For example, the effect of
relaxing the velocity multiplies the speed of sound by a constant factor

cTF5

cDF4
=

cTF6

cDF5
=

√
(αgρg +α`ρ`)

(
αg

ρg
+

α`

ρ`

)
, (5.16)

By rearranging the expression above, they also arrive at

cDF5

cDF4
=

cTF6

cTF5
, (5.17)

which shows that the same conclusion applies to the effect of thermal relaxation.
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Now, in the present work, we derived TF4 from the TF5 model previously mentioned by performing instanta-
neous phase relaxation, and found its sound speed (5.2). By comparing it to the speed of sound in the DF3 (5.15),
we immediately see that we can extend the ratio relation (5.16) with

cTF4

cDF3
=

cTF5

cDF4
=

cTF6

cDF5
, (5.18)

which shows that the velocity relaxation once more has an independent effect on the speed of sound. From the
above relation, we can deduce

cDF4

cDF3
=

cTF5

cTF4
, (5.19)

hence, the effect of phase relaxation on the sound speed is also independent from the order of the relaxation steps.
Using the results of (Martı́nez Ferrer et al. 2012) on the ordering of the speeds of sound, we can write from

(5.18)
cDF3 ≤ cTF4. (5.20)

Now, we take the difference between the two speeds of sound cTF4 and cTF5, or more precisely the inverse of their
squares, which gives

c−2
TF4− c−2

TF5 =
ρgρ`

α`ρg +αgρ`

T (αgρgCp,gχg +α`ρ`Cp,`χ`)
2

αgρgCp,g +α`ρ`Cp,`
. (5.21)

This difference is always positive, which proves that

cTF4 ≤ cTF5. (5.22)

Consequently, from (5.19)
cDF3 ≤ cDF4. (5.23)

5.4 Subcharacteristic condition and model hierarchy
We can now extend the results SC1–SC4 from (Martı́nez Ferrer et al. 2012) by adding the two-fluid four-equation
and the drift-flux three-equation models to the hierarchy. Following the argument of (Martı́nez Ferrer et al. 2012),
as well as referring to (5.1) and to the eigenvalues of the drift-flux three-equation model in (Flåtten & Lund 2011),
we can state the new results:

SC5: The model DF3 statisfies the subcharacteristic condition with respect to TF4.

SC6: The model DF3 statisfies the subcharacteristic condition with respect to DF4.

SC7: The model TF4 statisfies the weak subcharacteristic condition with respect to TF5.

Here we follow the definitions of the subcharacteristic and weak subcharacteristic conditions given by (Martı́nez
Ferrer et al. 2012). For the two-fluid models, due to algebraic complexity, the general eigenvalues are not known.
Therefore, we only discussed the case where the gas and liquid velocities are equal, which only proves a weak
subcharacteristic condition.

6 Condition for hyperbolicity
The canonical model derived above, with ∆p = 0, is generally not hyperbolic. Identically to the two-fluid six-
equation model, the eigenvalues related to the volume-fraction waves are complex as soon as the gas and liquid
velocities are different from each other ((Gidaspow 1974, Stuhmiller 1977)). The pressure difference term ∆p
has been added to make the model hyperbolic. In order to find an expression for ∆p, we will use a perturbation
method around the state where vg = v`. Based on the experience from the two-fluid six-equation model ((Chang &
Liou 2007, Evje & Flåtten 2003, Munkejord 2007, Munkejord et al. 2009, Paillère et al. 2003, Stuhmiller 1977)),
we look for it in the form ∆p = C · (vg− v`)2. We know, from the section above, the speed of sound of the model,
cTF4. The variable defined as

ε =
vg− v`
2 · cTF4

(6.1)

is small for subsonic velocities and is therefore suitable as a perturbation parameter. We first evaluate the charac-
teristic polynomial

ΠA = Det(A(U)−λ · I4), (6.2)
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where I4 is the identity matrix of rank 4. In this polynomial, we make a variable change through

λ =
vg + v`

2
+a · cTF4, (6.3)

where a is the new unknown. Then, all the occurences of the velocity are eliminated by substituting

vg = vm + ε · cTF4, (6.4)
v` = vm− ε · cTF4, (6.5)

where vm is the arithmetic average of vg and v`. This is in compliance with the definition of ε (6.1).
Now, we perform a power-series expansion of the eigenvalues in terms of the degree of ε . To do so, the variable

a is substituted by

a =
N

∑
i=0

(
bi · ε i) , (6.6)

where N must be higher than the highest degree of ε that we wish in the expansion. Then we will sequentially
solve

degree(ΠA,ε, i) = 0 (6.7)

for the coefficients bi, starting from i = 0, where degree(ΠA,ε, i) returns the coefficient of the ith degree of ε in
ΠA(ε).

The zeroth degree gives a fourth order equation in b0,

ρ4
g ρ4

` (α`ρg +αgρ`)
4L4

(ρg−ρ`)8c4
TF4

(b0−1)(b0 +1)b2
0 = 0, (6.8)

whose four solutions are b0 =−1, b0 = 1, and twice b0 = 0. The first two give the approximate eigenvalues

λ =
vg + v`

2
± cTF4 +O

(
vg− v`
2 · cTF4

)
, (6.9)

which are clearly the eigenvalues related to the pressure waves. The double solution b0 = 0 corresponds to the
volume-fraction waves, which are of interest here. For this wave family, we push to the next degree of the expan-
sion. However, the first degree of the polynomial ΠA(ε) vanishes when b0 = 0. We then go to the second degree.
Fortunately, b2 vanishes from the second degree, and we are left with a second order equation in b1

((αgρ`+α`ρg)b2
1 +2(αgρ`−α`ρg)b1 +(αgρ`+α`ρg)−4C ) ·

ρ4
g ρ4

` L4(αgρ`+α`ρg)
3

c4
TF4(ρg−ρ`)8 = 0. (6.10)

The reduced discriminant of the equation is

∆ = (αgρ`−α`ρg)
2− (αgρ`+α`ρg)(αgρ`+α`ρg−4C )

=−4αgα`ρgρ`+4(αgρ`+α`ρg)C .
(6.11)

Therefore b1 will only be real if

C ≥
αgα`ρgρ`

αgρ`+α`ρg
, (6.12)

which is the same constraint as the one obtained for the six-equation model ((Stuhmiller 1977)). The solutions are
then

b1 =
−αgρ`+α`ρg±2

√
−αgα`ρgρ`+(αgρ`+α`ρg)C

αgρ`+α`ρg
. (6.13)

This gives the approximate eigenvalues for the volume-fraction waves

λ =
vg + v`

2
+
−αgρ`+α`ρg±2

√
−αgα`ρgρ`+(αgρ`+α`ρg)C

αgρ`+α`ρg

vg− v`
2

+O

(
vg− v`
2 · cTF4

)
. (6.14)

We deduce from the above that the model with the regularising term expressed as

∆p =
αgα`ρgρ`

αgρ`+α`ρg
(vg− v`)2 (6.15)
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is hyperbolic at first order around the state where vg = v`. The same expression was previously derived for other
models ((Chang & Liou 2007, Evje & Flåtten 2003, Munkejord 2007, Munkejord et al. 2009, Paillère et al. 2003,
Stuhmiller 1977)). To make them actually hyperbolic when vg 6= v`, the pressure difference in these models has
commonly been defined as

∆p = δ
αgα`ρgρ`

αgρ`+α`ρg
(vg− v`)2, (6.16)

where δ > 1 ((Chang & Liou 2007, Evje & Flåtten 2003, Munkejord et al. 2009, Paillère et al. 2003)).

7 Resonance
The two-fluid models are prone to resonance, which means that the eigenvector space collapses under some condi-
tions, and the Jacobian of the fluxes becomes singular ((Isaacson & Temple 1990, Liu 1987b, Morin et al. 2012)).
This is due to the eigenvectors related to the volume-fraction waves becoming parallel when the gas and liquid
velocities are equal. The physical explanation is that the volume-fraction waves become identical – identical jump
and propagation velocity. This is not a problem for numerical methods that do not use the eigenstructure of the
system, because the two waves actually exist and are superimposed ((Morin et al. 2012)). However, this is prob-
lematic for numerical methods that use the eigenstructure, because it looks like information is lost. In this case, a
fix can be used to overcome this issue, for example the one described by (Morin et al. 2012).

8 Conclusion
We have analysed a two-fluid four-equation model as the limit of a five-equation model when the phase relaxation
becomes instantaneous. The phase relaxation source terms involve an interfacial momentum velocity, for which
we found an expression respecting the second law of thermodynamics. This model was then put in quasilinear
form by deriving the differentials of the primary variables. By this, we have extended previous works where these
terms were treated as instantaneous relaxation source terms. Then the intrinsic speed of sound of the model has
been extracted.

We have placed our model in a hierarchy of two-phase flow relaxation models. It has been proved in previous
works that the subcharacteristic condition is satisfied for a part of this hierarchy. In the present work, we have
proved that it is satisfied for the rest of our hierarchy.

Finally, we applied a perturbation method around the state where the gas and liquid velocities are equal. This
helped deriving an expression for the pressure difference in the regularisation term which makes the model hyper-
bolic.

This model is ready to implement, using numerical methods for hyperbolic systems. One should nevertheless
keep in mind that the model is prone to resonance, so that methods that use the eigenstructure of the system will
require a fix when the gas and liquid velocities are equal or close to each other.
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